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is developed to reduce the effects of modeling errors in optimal

control systems. Necessary conditions for minimnum sensitivity

are obtained from a measurable quasiconvex family of direction

fields. These techniques are applicable to a large class of non-

linear systems that could not be handled previously by standard

sensitivity methods.

The principal result is a complete theory for the pra-

tical design of minimum sensitive linear feedback compensators.

Sufficient conditions are developed from new theorems relating

conjugate points to the positive definiteness and controllability

of the accessory minimum problem. The advantages of the minimum

sensitive compensator relative to least square parameter estimators

are discussed. An example illustrates the improved sensitivity

characteristics of the eompensator as compared to model following
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ABSTRACT

A new formulation of the trajectory sensitivity problem

is developed to reduce the effects of modeling errors in optimal

control systems. Necessary conditions for minimum sensitivity

are obtained from a measurable quasiconvex family of direction
fields. These techniques are applicable to a large class of non-

linear systems that could not be handled previously by standard

sensitivity methods.

The principal result is a complete theory for the prac-

tical design of minimum sensitive linear feedback compensators.

Sufficient conditions are developed from new theorems relating

conjugate points to the positive definiteness and controllability

of the accessory minimum problem. The advantages of the min-

imum sensitive compensator relative to least square parameter

estimators are discussed. An example illustrates the improved

sensitivity characteristics of the compensator as compared to

model following and regulating controls.
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Chapter I

Introduction

1.1 Problem Statement

The dynamical behavior of many physical processes can be des-

cribed by differential equations. The ability of such a description

to correctly predict the actual system response is directly related

, ;to the accuracy of the mathematical model. Errors In the model can

result from unsatisfactory initial approximations and from

actual component variations after the model has been produced. When

a differential equation is used for controller design, the resulting

control may greatly depend on various parameters in the model. If

these parameters remain at their design values, the control input to

the actual process will produce the desired output. However, if the

actual system deviates from the model, the desired output may not

be realized.
Modeling accuracy is particularly important in the practical

application of optimal control theory. Here it is assumed that the

system dynamics are described by

": i = f_~~f(t. X, u_ l;x(t 1 1 a E1 (11

x where x is the n dimensional state vector representing the process

variables and n(t) is an m dimensional vector of uncertain parameters.

The problem is to choose an r dimensional control function u , assum-

ing that n a nn , such that over the time interval (t1, t2) the cost

functional
t2

J L(t, x,u)dt (1.2)
t1

is minimized subject to state and control constraints of the form

(t, _ u_ 0 (1.3)

'II
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A terminal region may or may not be specified. The solution of this
problem yields a time varying control, u = t), such that, when

applied to (1.1) with the parameter vector at its nominal value,
the optimal trajectory, x(t), is obtained. There are many

quantities related to the optimization problem, such as the cost funct-

ional, constraint boundaries and terminal manifold, which are effected

by parameter variations. However, all of these are related to the

basic objective of generating the desired system output 4(t).

The problem examined in this dissertation is the realization

of Xn (t) when the actual system deviates from the design system through

changes in the parameter vector n. The trajectory sensitivity problem

is thus defined to minimize or reduce variations in the system output

Axa x - In, caused by variations or uncertainties in the modeling
parameters, An = n-nn-'

1.2 Previous Work

During the past few years there has been much interest in the

sensitivity of control systems, particularly those which are optimal in

some sense. The following paragraphs contain a short description of

the major results which have been obtained thus far.

Classical Sensitivity Techniques

Standard methods of solving the trajectory sensitivity problem

for linear systems are described in reference [1] through [4]. The

methods basically employ feedback as a second degree of freedom to

reduce output errors as shown in Figure 1.1

Figure 1.1: Closed Loop Control System

2
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The first degree of freedom determines the nominal plant transfer
function or operator P such that

S(t) = P((t)) (1.4)

V •This is obtained, for example, from the solution to an optimal control

problem. The feedback operator H is then determined to minimize or

reduce sensitivity to plant parameter variations 6P with G determined

such that the overall (closed loop) transfer function is nominally

equivalent, i.e., x= n for 6P = 0. The closed loop transfer function

is thus

xc [I - P G H PG Un (1.5)

It is therefore seen that, through the use of feedback, the structure

of the original transfer function or operator is changed. In effect,

two separate transfer functions P and D could be respectively determined

to realize the original design objectives and to reduce trajectory

sensitivity. The synthesis problem would then be to compute from

these the operators G and H. To date,no practical design techniques

-had been determined to generate a physically realizable feedback

operator, H, which minimizes the trajectory sensitivity.

Sensitivity Operators

The original definition of the sensitivity operator (references

[1] - [4]) for single input, single output systems, relative to a

scalar parameter n, is given by

6P/-' n nln(1 .6)

where P is the nominal plant transfer function (1.4). The operator
relates normalized changes in the transfer function to parameter

variations. Sensitivity is reduced by causing S to be as small

as possible.

3
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A generalization of this to multivariable systems described by

linear operators was given first in [5] and later in [6] through [9].

It is assumed that the actual plant operator is given by

Pa - P + 6P (1.7)

where 6P is an additive parameter variation. Referring to Figure 1.2

the closed loop output error, 6xc a xc - !n is related to the open

loop error, 6 =Pa Mn - !n as follows

K. dx 6 = N 6O (1.8)

"-', where

N I=[I-Pa GH]-l

but reduces to

N =[I + PH

when 6P is small. The compensator is then

G = [ I + H P

for nominal equivalence. It was shown in [5] - [9] that a sufficient

condition for sensitivity reduction defined by

1" 6xc 1 <Ii dXo II

was that the operator N be such that
4 N*

[ -N N 0 (1.9)

when N is the adjoint of N, or that N be a contraction. Some

stability conditions have been obtained for linear feedback gains in

4[8] and [9] such that (1.9) is satisfied. In general, (1.9) is

difficult to use as a design tool.

Closed Loop Optimal Systems

Consider a general optimal control problem such as that given

4



by equations (1.1) through (1.3). One method of generating a feedback

solution is to seek the optimal control as an explicit function of the

initial state, x(t). Then t1 can be treated as the present time with
- x(t1) the present state. This has been done in references [10] and

[11] for linear systems with quadratic cost functionals. The feedback

gain matrix was shown to satisfy a matrix Riccati equation.

Since feedback does not necessarily imply sensitivity reduction

or even stability, it is of interest to examine the sensitivity
characteristics of optimal systems. The steady state regulator was

considered in references [12] and [13] with nonlinear optimal systems

being investigated in [14]. It was shown in [14] that for relatively

smooth nonlinear systems

I Z 6x TZ 6x dt f  6xoT Z 6xo dt (1.10)
ti -o -o

where Z is positive definite and V is any point within the optimization

interval. For linear quadratic problems

Z = KT R K

where K is the feedback gain and R is the control cost weighting matrix.

In addition, it was shown in [12] and [13] that for steady state linear

quadratic problems (1.10) is equivalent to (1.9) and the classical

return difference function [2] is greater than one.

In most cases, the optimal control cannot be obtained as an

explicit function of the initial state and the above results then do

not apply. Also (1.10) only states that a sensitivity reduction occurs

and gives no indication of the actual amount of the reduction.

Sensitivity Functions

One method of reducing sensitivity in optimal control systems Is
to include sensitivity terms in the original cost functional. If the

resulting control is implemented at a function of time (open loop),

5



then a tradeoff can be made between the original design and sensitivity

objectives. This was done in reference [15] however, in order to

achieve a significant sensitivity reduction, the original design

objectives had to be considerably relaxed. This method also does not

yield nominally equivalent solutions, i.e. the original (no sensitivity

constraints) optimal control will not result when parameters are at

their nominal values.

For the linear regulator problem, attempts were made to generate

feedback controls with sensitivity terms in the cost. In order to do

this, higher order sensitivity terms were neglected in references

[16] and [17]. This approximation was avoided in [18] by treating

control sensitivity terms as additional control functions. The result-

ing feedback control is linear in the state and the first order

sensitivity vector, which is of the same dimension as the state.

Therefore, the implementation of this requires the generation of the

- sensitivity terms by a dynamical system which is approaching the

complexity of an optimal filter. in addition, since the regulator

solution alone reduces sensitivity by (1.10), it is possible that the

. sensitivity reduction resulting from the augmented system could be

simply obtained by adjustment of the terms in the original cost

function.

Model Reference Adaptive Control

A particular solution to a control problem results in a nominal

input to a plant with a specific transfer function. For this input,

a model of the plant can be constructed which gives the desired

- output. The model reference technique [19] compares the actual output

with the desired output and then adjusts certain control parameters

J such that a measure of the output error is minimized. Gradient and

steepest descent procedures are used to determine the control parameters.

- This method has inherent stability problems in addition to being

difficult to implement due to its complexity.

6



7 . .
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Linear Estimation and Control

Assume that for the system defined by equation (1.1), an optimal

control function un(t) has been determined with n = n. Using the
resulting optimal trajectory, An(t), as the nominal, the perturbation

equation of (1.1) is

_ Z A &x + L- Au + f An (1.11)

where all partials are evaluated along the nominal and the A quantities

represent off nominal errors. Let some linear function of the state

error

by M Ax + d (1.12)

represent the measurements where d is Gaussian noise with zero mean

and known variance. Then, assuming disturbances of known statistics

on (1.11) and the linearized dynamics for Ain, the Kalman filtering

techniques described in (20) - [22] can be employed to estimate Ax

and An. This will require a dynamical system of dimension (n+m).

The control error, Au, can be determined such that a quadratic

functional in Ax and Au is minimized. In this case, references [10]

and [11] indicate that Au will be a linear function of Ax and An.
Because of the separation theorem ( [23] and (24] ) for linear, quadratic

problems, the optimal filter and control can be combined to yield a

dynamic feedback control, Au = H (ay). This is a good solution to

the first order sensitivity problem except for its complexity and

corresponding implementation difficulties. One other problem is the

choice of state noise on the parameter error equation to keep the filter

from becoming over confident (see reference [19] ).

* .Feedback Operators and Controls

One technique of generating feedback controls from a given

optimal control is to break it up into functions of time and state, e.g.

7



where h(t,x,) *0 along the optimal trajectory. This type of control

has been termed "partially closed loops since uL(t,x)-is not an explicit

function of the initial state. It was used in reference [25] to

combat the singularity problem in final value control systems. Controls

of the type (1.13) were also employed in reference [26) to reformulate

the combined optimal control and sensitivity problem discussed in the
section on sensitivity functions. The formulation basically consider-
ed Y,(t) and [ Wa/x I as control functions to be determined by
minimization of a coupled state-sensitivity cost functional. Reference
[26] did not carry the problem further than the formulation.

Some interesting results have been obtained by Porter in [27]
where the sensitivity problem was formulated using Functional Analysis.

* .It can be seen from (1.8) that for small parameter variations,and when
the compensator is H X P1 with X a scalar, the sensitivity operator
becomes

N II

Thus as A -o1 the closed loop sensitivity approaches zero, however, the

forward loop compensator gain (G) then becomes unbounded. The major
drawback is that when P represents a differential equation, H is a

differential (unbounded) operator and thus is difficult to implement.

Also proposed in [27] is the following problem. Determine the operator

H such that

J 11 [R 6C12+ 11 QH q6ll 2 J

is a minimum where Q and R represent appropriate design matrices and
the 6x terms are as defined for (1.8). Using Hilbert space techniques,

the solution is

.1 H - O41 + OP P P

G • .I + cP* P

8



where a is determined from R. When P represents a linear differential

equation, the control error is given by

tf' " Au = I (tf~s) Ax.(s) ds

t

where i(.) is the transition matrix of P and tf is the final time.

The feedback control thus requires knowledge of future values of the

state and is therefore unrealizable. It should be noted that this

result can also be obtained using methods of variational calculus.

1.3 Scope of the Dissertation

The principal objective of this dissertation is to develop a new

formulation of the trajectory sensitivity problem which is applicable

to general nonlinear systems. As in classical sensitivity methods,

the use of feedback as a second degree of freedom plays a large role

in the theoretical development. To this end, the original system

(1.1) with the control and parameter vectors at their design values

(u - 4 , n.= n) is considered as the nominal. A closed loop system

function 1(t, x, n.) is then sought such that the solution to

Z 9(gt, x, a) ; x(t) -EI 1.4

remains close to the desired output of (1.1), xn(t), when n_ differs

from _. The system equations (1.1) and (1.14) are related through a

nominal equivalence condition, i.e.

I- x ) - _(t 9 A-$ ) .

An additional relationship can be obtained if the functions g(.) are

generated by applying feedback controls to (1.1) as follows

q(t. x,. i(t, E_, _(tax), n).

This is one possible solution to the synthesis problem.

9



In Chapter 2 the problem of determining the system function g(.)

which exhibits minimum output sensitivity to parameter errors is

formulated as a direction field problem in the calculus of variations.

Then, from a general class of measurable, quasiconvex, nominally

equivalent system functions, necessary conditions are obtained for

extremality. The extremal function effectively results from a trade-

off between reduced output error and increased deviation from the

nominal (design) system. These results are then shown to be applicable

when the class of system functions is generated from feedback controls

applied to the original system.

To alleviate the synthesis problem, further specialization

is made in Chapter 2 to the class of linear, time varying gain feed-

back controls, small plant parameter variations and quadratic cost

functions. The necessary conditions thus obtained explicitly determine

the feedback gain matrix which minimizes the mean square and final

value first order trajectory sensitivity, independent of the parameter

errors. In Chapter 4, sufficiency conditions are determined using

some new results on conjugate points derived in Appendix B. It is

shown that the minimum sensitive (MS) gain function is determined,
.when it exists, from solutions to linear differential equations.

Existence problems are removed through the addition of cost penality

- terms and linear approximations to the modified problem are then

proposed. The theory developed in Chapter 4 gives, for the first time,

a practical method of designing linear feedback compensators which

minimize trajectory sensitivity.

The remaining chapters correlate presently known sensitivity

?" reduction techniques to those of Chapter 4. Some new sensitivity

• -relationships are derived in Chapter 3 for model following, regulating

and stabilizing controls. A comparison example is presented in Chapter

5 which shows the superior sensitivity characteristics of the MS

gain function relative to the controls discussed in Chapter 3. In

addition, relationships between the MS compensator and classical

sensitivity techniques for linear systems are derived in Appendix A.

10
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It is shown that the feedback compensator of Chapter 4 is similar in

structure to classical input compensators and that the closed loop

system error, which is employed in Chapter 2 to limit the amount of

applied feedback, can be corresponded to the transfer function for

measurement noise. The latter is the limiting factor for classical

sensitivity reduction techniques.

Least square parameter estimators are compared to MS controllers

in Appendix C. It is shown that both have similar structures when

the number of parameters equals the state dimension. The MS controller,

however, is applicable to a much larger class of problems than the

estimator and also is computationally simpler to determine.

I.
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Chapter 2

Direction Field Formulation
of the

Trajectory Sensitivity Problem

2.1 Introduction and Problem Statement

The solution of an optimal control problem over the time

interval [t1  t2] can be described by the following differential

equation

xn : i - M . ;x~ l) = nl (2.1)

where x, u and n are of dimensions n, r and m respectively. The

function f(.) is assumed to be locally integrable in t and of class C1

(continuous partial derivatives) in x, u and n. It is also assumed

that the parameter vector n(t) evolves according to

i 1( = t, n) ; n(t1) -al (2.2)

where (-) is a fixed function that is locally integrable in t and C
1

in n. The solution of (2.1) is given by

.::. n(t, I n -xn(t) (2.3)

which is the desired optimal trajectory. Assuming that all initial

condition errors are accounted for in un(t), variations in the

modeling parameters, An - .(t) - in(t), result in the open loop system

o - fit, x' a)  !o(tll - _nl (2.4)

The corresponding open loop trajectory is thus

-•..!o(t, a). !o(t) (2.5)

which is absolutely continuous in t and C in !.

12



Feedback can be employed as a second degree of freedom by

defining the closed loop system as

= 2(t, x, a) ; x(t) (2.6)

where j() is a member of a certain class of functions G to be

specified in the next section. Each E(.) G G satisfies the nominal

equivalence condition

j(t, x, fn) f(t, x, Un' -nn) (2.7)

Therefore (2.6) defines a class of direction fields about f(.) which

is parameterized by a(t). In order to solve the trajectory sensitivity

problem defined in Chapter 1, a function 9(-) E G must be chosen such

that the solution of (2.6), x(t, .), minimizes some function of the

error

Ax(t, n_ = x(t, a) - 4(t) (2.8)

over the original optimization interval [t,, t2 ]. For practical
reasons such as system noise and original design constraints, g(.) must

also be chosen to limit some function of the system error

agj(t, Xn) - 1(t, -x_ D) - f(t x, , a) . (2.9)

This represents the deviation of the closed loop system from the open

loop system. The trajectory and system errors, (2.8) and (2.9) can

be combined into a general cost function

Jlt2, 2 ) " 4(t2, M) + I2 L(t, Ax, &j) dt
t1

or equivalently t2
J 2 I(t, x, a1 a(.) ) dt (2.10)

tl

13



where I(-) is assumed to be locally integrable in ttj 9(.) E G and

C WRT x, rand 9(.). The above cost effectively trades off trajectory

sensitivity for closed loop system error. The problem is thus to

choogL(') E G such that (2.10) is minimized subject to (2.6).

2.2 Necessary Conditions for Minimum Sensitive Closed Loop System
Functions

In the following paragraphs, the class of admissible functions

G will be defined along with a general concept of an extremal. Then

necessary conditions will be derived for the closed loop system

function which minimizes trajectory sensitivity.hAdmissible Class of Functions
Let G be an n dimensional family of functions 9(t, x, _q) where

St T -a bounded interval

x Rx - an open subset of R

!14E R - an open subset of Rm

It is assumed that the following hold for each E(.) 6 G.

a) Each 9.(t, x, n) is measurable in t E T for each

x46R.a6R
i x nx

" b) The functions j(.) are in class C1WRT x and 1.

c) To each j(.) 6 G and compact subset S CR x R 3 an
integrable function m(t) on T st V x, a6 S

,1 %(t, , 11 -C <m(t)

lj(t., _) II m(t)

where the norms are the standard vector and matrix norms in

Euclidean space.

d) Define P a 4E Rb: Cl1> 0, ZE l

[G] - convex hull of G

14
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h hpb i
11.1

Then to each set { g 1 G i - l...,b. P pb and

e > 0 B gm E G st the function

b
h(t,x,;) = Z ai g(tx, ) -agt,x,a)

'"1=1 =1

satisfies the following conditions

dl) 3 an integrable function r(t)st

II h(t, x, ; a) < (t),~~~~~hxt,_,1;1,<(t

it x, aiE S ; tET; E pb
d2) ii 1t!2 h(t, x, a; a) dt II < c

Yx, E6S ; a6P b  ; t', V2ET

* d3) For each sequence ( aJ b b st CLJ -,-E pb

as J- and each 6 > 0

P{t: IQh(t, x. n; a1 ) - h(t, x, a) 1 > 6) -1- 0

as j V x, a S where is is a Lebesgue measure

on T.

e) Each %(') is nominally equivalent WRT _j, i.e.
,.,- (t9 19 !Id " flt, x . , M 1 .

Assumptions a), b) and c) are basically minimal requirements for the

differential equation (2.6) to have a unique solution (reference [30]).

15



The quasiconvexity assumption d) is employed to assure that enough

functions are in G for the extremal problem to be meaningful.

"* Definition of Extremality

*" For some element E() G 6, the system differential equations are

- (t xft, )

where i() is defined by (2.2) and satisfies the same conditions as

each g E() G WRT t and n, although it is a fixed (or given)

function. The solution to (2.11) is

x(t, nj !(t) ; trT

where both are absolutely continuous a.e. in t and C1WRT n with

' * boundary conditions either implied or explicitly stated

x(tl) = l ; x(t 2 )

= l ; 2 (t 2 ) =-12

Let

qxn (t1 t -l' 1 ' D_) , R2(n+m+l) (2.12)

Define a set Q C R2(nl+l) as that containing all points qxn corres-

ponding to all solutions of (2.11) for all G(.) 6 6. An extremal will

be defined in terms of a given differentiable manifold lR2(n +l)

with boundary M as follows.

Definition: The solution i, j of (2.11) for some C(.) G 6
is a G - N extremal if qj 6 M and if 3 an open neighborhood

U U q st UnNnQCm.

The above implies that at qj the sets N and Q are separated in some

sense.

16
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The manifold N can be defined in terms of the sensitivity problem

by considering the cost function J given by (2.10). Adjoin to the

state vector x(t) the quantity x(n+lt) defined from

X(n+i)(t) = I (t, x, n, j(') ) ; X(n+l)(t l) = 0 (2.13)

and extend Q to include all points

xn = (t1' t2 ' 11' X(n+l)(tl)) 21' 22' X(n+l)(t 2 )'P-,)R

Using the fact that the optimization interval is fixed along with the
initial state and parameter vectors, define the differentiable mani-

fold N CR2(n m+2) as the set of points

1"( l 2, , L , _1 , 12 , 2, ]L2)

given by

VI ti V2 = t

(2.14)

S= X , E = 0 X Xl aln

which are fixed quantities and by

C2 E Rx
Ri:  Y2 e (n 2.15)

°.;a i (n+l)lt2)

where x(n+l)(t2) is the minimum of J. Thus N is a subset of at most
dimension (n+m+l). The boundary M is given by all relations defining

N except that the one involving 2 is replaced by

;2 X(n+l )(t2) (2.16)

17
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Necessary Condtions

Let G' be an (n+m+l) dimensional family of functions given by

g: (t, _ = ( Tlt, x,!) , It. x. , (.) , _tt, BS)

where

z(t) - T(t, ) ,+l)(t), (t) T

with j(.) G G and t(.) a function previously defined satisfying condi-

tions a) through c). The cost integrand I(-) is assumed to satisfy

a) through d) f j(-) 2 G. Thus each g'(.) G 6' is an admissible

function. The quasiconvexity condition carries over for t(.) because

it is fixed. Define the Hamiltonian as

H (t, z, _) = iT(t) ' (t, z)

where _(t) is an absolutely continuous (n+m+l) dime"grial vector

function. Note that H(-) is completely determined by the choice of
:.-: '() 6'.
VE

As previously stated, the sensitivity problem is to choose
( G such that (2.10) is minimized subject to (2.6). The follow-

ing theorem gives necessary conditions for the minimizing closed loop

system function.

Theorem 2.2: Let the function G(.) 6 6 and corresponding

solution -I(t, of

..- _ i t _q 1( ; 1-t ) " nl (2.17)

with H(t) given by (2.2) minimize the sensitivity cost (2.10) over the

interval [t1 , t2J. Then a a nontrivial absolutely continuous vector

p(t) on [t1 , t2J st with _f = [ T Xn+ 1 'TT the following holds

218
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where it, i) -[ _TT

I!:::and ( t, iD T~) iz

In addition V 91(e) E G'

t 2 IT (t,i, j.j dt > 2 H (tz,) dt
tI t

If ( (t, z) is continuous in t at tI and t2, then the transversality
condition is that

-T T[ (tl , (_- L,-H 2 ,9_- j), -T(tl). iL(t2 ) ]

be orthogonal to the boundary M at the point q.

Proof: The above conclusions are similar to those of Theorem

2.1 in reference [29], the statement and proof of which are given in
sections 2 and 3 of the reference. The theorem differs in that [29]
assumes that for a particular (.) E G!, the solution z(t) of

z : (t,Z)

on the inverval [: t1 , t 2 1 is a G'- N extremal. It therefore remains
to show that the hypotheses of this theorem imply a G- N extremal.
To this end, let the manifold N with boundary M be as defined in the

previous section. Since the cost (2.10) is a minimum and is represent-

ed by x(n+l)(t2), any point in Q will be such that

xinl~i 2 ) , (n+l)(t2).

Thus the intersection of any open set about qj with Q and N will result

in ;2 - x(n+l)(t2)= 1n+l)(t2) which is by definition in M. The
solution ( (t) is therefore a G!- N extremal which completes the proof.
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It should be noted that the nominal equivalence condition, e),

is not explicitly required to obtain the above necessary conditions.

It is a synthesis requirement which will become more explicit in later

sections of this chapter where the class of system functions is gener-

ated by nominally equivalent feedback controls.

If the cost function (2.10) is sufficiently convex, certain

bounds can be obtained on the minimizing closed loop system (2.17).

For example, when no restriction is placed on the system error

Aj(t, x, ) given by (2.9), then the output error and equivalently

the cost J can be made zero over [t1, t2] by choosing

1 (t, x, _ f(t, n' n)

This not only requires knowledge of the parameter _(t) but controll-

ability as well. If no restrictions are placed on the output error,

then zero cost will result from

1(t, x, 9.) = f(t, x, , DJ

which is the open loop system. It is therefore seen that particular

choices of the cost functional (2.10) can not only alter the closed

loop system function but also the synthesis problem.

2.3 Generation of System Functions Using Feedback Controls

The standard technique of producing closed loop systems is by

applying feedback controls, u(t, x), to the original system (2.1) in

place of the open loop control, u t). Thus (2.6) becomes
-'n

- f(t, x, u(t, x), ) ; x(t1) = !hl (2.18)

If u(t, jx is nominally equivalent, i.e.
R (t, !n) - Unit) (2.19)

then (2.1) will be realized when the parameters are at their nominal

20
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values, n(t). In this section, the explicit problem of determining

a feedback control law which minimizes (2.10) subject to (2.18) will

be considered. Therefore, let Gu be an n dimensional family of

functions defined by

1. { j(t, X, !1) : 9(t, x, u f(t, x, u(t, x, E) ; u(.) 6 U)
(2 .20)

where the set U of admissible controls is defined below and f() is the

original system function given by (2.1). If the class G can be shown

to be admissible, which implies satisfaction of conditions a) through

e) of section 2.2, then Theorem 2.2 can be applied to determine the

minimizing control.

Let U be the set of all control functions

u(t, x) : T x R-Y

where T and R are defined in section 2.2 and Y is a fixed set in Rr.

It is assumed that for each u(-) 6 U the following conditions hold,

m) Each u(t, x) is measurable in t E T for each x Rx

n) The functions u(.) are in class C WRT x.

o) For every u(t, x) 6 U, f(t, x, u(E) L ) measurable in

t and C1 WRT x, u, ij, and compact subset S CR x Rn ,

3 an integrable function ii(t) possibly depending on

S, f(.) and u() st V x, n6 S

iif_(t, x, u(t, x), 1 (
: il t, Xut,!x) )I• t

flu (t' X, U(t, 'A,11 (t' 11I t
:"' Ilk~t, x, u(t, x), !J)el• t

where II .11 represents the Euclidean norm.

4
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p) The control function

f u( (t, x) , tET
U (t, = u2 (t,x) , tiT

is in the class U where ul(.), u E() EU and T1 C T.

q) The control functions are nominally equivalent, i.e.

!l:'"!!(t' in) Z u (t

Conditions m) through o) are included to assure unique solutions to the

differential equation (2.18). Property p) guarantees that control

perturbations such as those used in [32] are admissible.

The next Theorem extends the results of [29] for time varying

controls to include feedback control functions.

Theorem 2.3: The class of system functions Gu defined by (2.20)

using controls u(t, x) E U is admissible, i.e., the functions satisfy

conditions a) through e) of section 2.2.

Proof: From the assumptions on the original system function

given by (2.1) and conditions m) through o) defining U, it is seen

that conditions a) through c) are satisfied for each g(.) E Gu. Also,

by definition of nominal equivalence, q) implies e). It therefore re-

mains to show that condition d) holds.

Let the functions G t (.) , Gu} 1,...,b be given along with
_ e pb compact subset S C Rx x Rn and scalar e > 0 where

It is desired to show that 3 a control ue(t, x E U such that the

function

h(t, , ra;) z 0 (t, x, ) f(t, X, u(t, x), ) (2.22)

22
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satisfies condition d), in particular the quasiconvexity condition d2).

In what follows the control will be shown to be of the form

ua(t, x) u (t, x) ; t E Et3  j = 1 K

where the E are disjoint, x E S and tU. EjC T. The method of proof

is similar to that of Lemma 4.1 in [29];however, the structure is much

less complex.

It was shown in [29] that there exist continuous functions on TxS

arbitrarily close to j'(t, x, n) in the topology defined by d2). Thus

for the remainder of the proof, the g(.) will be assumed continuous in

t for fixed x and a. Partition T = [ tl, t2 ] into disjoint sub-
intervals Ii. j = 1,...,K, and choose K sufficiently large st If x, nES!3

and i = l,...,b, the following holds

gi(tj, x - i (t', x, a) I E/2T (2.23)
b

I ci gi(t, x, EL) dt A(K) If < '12 (2.24)
T i=l

where Kb

A(K) = il i I'(tj. X, ,q) l1 (2.25)
j=lIl

and t' , t. E Ij. It is possible to do this by definition of the

integral and of continuous functions and since S is compact. Now

further divide each I. into b disjoint subintervals

= i I. i = .,...,b (2.26)

Note that b b

U E.. = : I = I.
1=1 ' 2I01 il

Thus (2.25) becomes
K b i

A(K) - £ E (tj, E, _) Eij
j=l 1=1
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Define the control function as

U (t, x*u (t, jx t eE (2.27)

and note that ua(.) C: U by condition p). From (2.21)

gf(tq X. 1a) =f(tq x, uOL(t 9) a) (2.28)IiThus V x.nE S
11 f t(t, x, a; a) dt 11
T

11 fi a j 1  dt f cl. dt 11
T !=1 T

411 f I a, (. dt -A(K)I+I A(K) f ~( dt 11
T T

K b K b
/2+11 2: E .1(tj,x, ) Ei - 2 Z 1 j (t,,x,a)dtI

Jul 1=1 J-l iIi Eu

K Kb
(/2 + z z 11 f ( (tj~ x.) (t. a dt 11

C £/ C£~ K b

Jul 1=1 i

Since the above holds on a subset Ct!,, le2l CT, condition d2) is set.
Also the fact that hL(*) in (2.22) is generated directly from f.

implies that d1) and d ) hold. Conditions a) through e) of section 2.2

are satisfiedpand therefore the class Gis admissible. This completes
the proof.

- Using the above theorem, it is possible to compare the problem
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formulations of references 129] and [31]. Gittleman formulates an

extremal problem in which the system functions must satisfy a condition

similar to property p). The above theorem implies that functions which

satisfy this property are quasiconvex. Therefore to this extent,

Gittleman's formulation is included in that of Gamkrelidze.

2.4 Specialization to Small Parameter Variations, Linear Feedback

Controls and Quadratic Cost

The problem of synthesizing from the class U defined in section

2.3 a feedback control such that the necessary conditions of Theorem

2.2 are satisfied is in general a difficult task. The difficulty

occurs because the theorem gives no conditions for the structure of the
minimizing control function, u(t, !). In what follows, further

specialization of the sensitivity problem will be made such that the
synthesis question is resolved by the problem formulation.

In addition to the conditions imposed on the admissible class of

system functions G and on the control set U, the following assumptions

are made.

sl) The unknown parameter n is a scalar constant, i.e. L(,) = 0

in (2.2). (Multiple parameter variations will be con-

sidered in Chapter 4.0).

s The parameter error,,&n = n-n is sufficiently small such

that only first order terms are required to describe the

system behavior relative to the nominal.
s3) The closed loop system functions are generated by the family

Gu defined in (2.20) with the control class U restricted to
contain elements of the form

u(t, x) = Ll(t) + K(t) x(t) (2.29)

where ul(t) and the (rxn) matrix K(t) are essentially
bounded functions ( [33], [34) ) with Ul(t) determined

for nominal equivalence.

54) The cost functional J given by (2.10) is quadratic in

p.-



xand 6(t, x. n), i.e.

(t1, n) D TT)

+ s [ xT QA& + T W ] dt (2.30)

tA

where D and Q are (nxn) positive semi-definite matrices

and W is a positive definite (nxn) matrix. Also, Q is

assumed to be integrable and W essentially bounded.

Using the above, explicit expressions can be obtained for the cost

(2.30) and system differential equations (2.6) which involve only

first order trajectory sensitivity terms.
The error expressions in (2.30) are evaluated as follows. Since

the solution of (2.6) is ClWRT n, assumptions s1) and s2) imply that

4x(t, n) & x(t, n) - l(t, nn)

341(t, n
[n nn  (2.31)

s(t) An

where s(t) represents the first order trajectory sensitivity. To

determine Aq(t, x, n), note that from Sl) and s2)

+ af ax +af
I (t, X, ,n) f(t, n,, d + a + In

:(l_9(tx~n)- 1, nn  + [ + 3n A n

where all partials exist because f(.) and (.) are ClWRT x and n. Thus

26
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X( t. x9 ) - (t, x_ r) - f( 1, n, )

af ax A (.
x -n -- ] An (2.32)

since by assumption e) i(.) Is nominally equivalent. From s3) and

(2.20)

"= af + af au
ax ax au ax

ag _ af

an an

Equation (2.32) thus becomes

A(tX,) = af au axau ax an

which yields, from (2.29) and (2.31)

'wt' x, n) I f (t, n, n nn) " K(t) s(t) An (2.33).. (t- ---n .~

-Using (2.31) and (2.33) in (2.30), an expression for the cost is

A2 T + Tn TTt
'!'! J" s-Tt2 D -t)+ ' 2t Es-TQ s- + sT KT EafTWd -af Ks) dt

-- s (t 2)D 1(t2)+ 2  [s7-s ru KT d

It is assumed that nn(t, x, u, ) is essentially bounded in t and
of rank r. Then since the parameter error an is uncontrollable and

: the matrix I a W - is positive semi-definite of rank r, it is

sufficient to minimize over K(t)

I T I T,Jt-) s(t2) + [.sT q s + sTKT R K js dt (2.34)
t

where R is positive definite, essentially bounded and of rank r.
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It remains to determine a differential equation for s_(t). From

(2.18) the system dynamics are given by

_ = f(t, x, u(t, x),n); x(tl) = Anl (2.35)

where u(.) e U is defined by (2.29). From s1) and s2), the first

order expansion of (2.35) is

L af af u af (2.36)_ ax - au ax - (3

where all partials exist by definition of f(.) and u(.) and are

defined relative to the nominal xn(t), unCt) and nn  Also since
ax

the solution of (2.35), x(t, n), is continuous in t and n, = 

From s3), (2.36) thus becomes
* af

s = af + af K(t) s + -Ln ; S(t,) = 0 (2.37)ax- au an
f af afwhere a and L are integrable in t and L is essentially bounded

ax an au
af(in Lw). Note that for the product L. K to be integrable,• au

H61ders inequality ( [33], [34] ) implies that at least one of the

functions must be in L. Since (2.34) is quadratic, it was necessary

to assume Lw for both.

Equatiors (2.34) and (2.37) define a subsidiary minimization

problem which determins the optimal gain function K(t) relative to

,'77 assumptions s,) through s4). The advantages of this formulation are,S4-
that the problem is linear and quadratic and that it is independent

of the actual parameter values. From (2.29) the desired control

input to (2.18) is

u(t, x) - U(t) + K(t)x(t) (2.38)

or, by application of the nominal equivalence condition on Ul(t),

u(t,. x z (t) + K(t) [x(t) 4(t) ] (2.39)
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It is shown in Appendix A that compensators of this type are related

to classical input compensators for linear systems.
* -In summary, the problem has been reduced to that of minimizing

the cost functional (2.34) subject to the system equation (2.37) over

all (nxr) matrices K(t) of essentially bounded functions. If, in

section 2.3, the elements of K(t) are corresponded to u(t) and simi-
larily s(t) to x(t), then it is easily seen that conditions m) through
p) are satisfied. Theoren 2.2 thus gives necessary conditions for

the minimizing gain K(t). It should be noted that a solution to

this problem cannot be obtained by application of the niaximum
principle [32] or standard variational techniques [30]. For these
methods to be valid, the system and cost matrices must be continuous

instead of being essentially bounded or integrable as assumed above.

.
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mI Chapter 3
Reduced Sensitivity Solution

3.1 Introduction

- The problem of minimizing (2.34) subject to (2.37) will be

deferred until Chapter 4. In this chapter the main consideration is

the sensitivity equation

= As + BK s + j ; s(t1) =0 (3.1)

where the A, B and g coefficients respectively correspond to those of

(2.37) and are assumed continuous in time. Two gain functions K(t)

will be examined which in some sense reduce the closed loop sensitivity

Sc(t) given by (3.1) relative to the open loop sensitivity so(t) given

also by (3.1) but with K(t) = 0 on Etl,t 2J. One function is a de-
coupling control and the other is the regulator gain.

3.2 Model Following Control

Sensitivity Bounds

Rewrite equation (3.1) in the following form

s H s+ g ; s(tl) = 0 (3.2)

where the (nxn) system matrix H is given by

H = A + BK . (3.3)

It is desirable to choose K such that

H =;i > 0 (3.4)

•"n-

for then (3.2) can be analyzed as n uncoupled scalar equations. If

the control dimension r is greater than n and B is at least of rank

n, then K can be realized by

K B T EBBT] "  [H -A]
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But if r < n, as is usually the case, techniques such as decoupling

[35] or model following [36] must be employed. A simple model follow-

ing technique is described in the next section.

In what follows, it is assumed that H has been decoupled as in (3.4)

with the positive scalars ai being constant. Also, to obtain realistic

bounds on the sensitivities, a disturbance term will be added to (3.1),

i .e.

A s + BK s + g + BK d ; s(t1) = 0 (3.5)

where d represents measurement errors. State of system disturbances

are included in S. Thus (3.5) becomes

_ = H s + g+ [H - A] d ; s(tl) = 0

or

ii -- isi - idi + gi - (Ad)i (3.6)

Then for i = 1,...,n and t E [t1, t2]
Isi~t) < M i (t, ai

)  (3.7)

where
Mi (t , ai )  1 - -ci(t-t b 1 1

b = sup [g - (A d).] and ai = sup [di]
"t 1 - i t "

For a fixed t' E [t1,t2) the bound behaves as follows relative to

variations in ai

,im t(t', ai) = bi(t' - tJim M(t', O.) = a.
It s -t

'It is thus seen that the sensitivity bound approaches that of the

measurement noise for large system (feedback) gains. For a fixed Ci

and t2 unbounded

,im ta 1
llm M(t, O'i) i0 and lm M(t, ai) = '. + ai
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Thus, depending on the length of the interval [t1 , t2], a1 can be

determined from a tradeoff between the relative magnitudes of the state,

bt, and measurement, ai, disturbances.

Optimal Model Following

The problem considered in this section is that of determining the

feedback gain K such that the system given by (3.1) performs as (3.2)
with a fixed system matrix H. Treating the parameter variation term

g(t) as a disturbance, it is desired to choose a control function

9u(t)= K(t) i(t) such that

= A s + B u ; s(ti) = 1 (3.8)

performs as

H s s(t 1 ) Z s1 . (3.9)

To this end the following cost functional is employed

J(u) 1=s- I I_ - Hs) + uT u ] dt (3.10)

tl

where Q and R are positive definite we4ghting matrices and s(t) is

given by (3.8). Letting E = A-H, (3.10) becomes

j(u) = st2[(Es+ Bu)T Q(Es+ Bu) +uT Ru] dt.(3.11)2 t

The minimization of (3.11) subject to (3.8) is similar to the regulator

*l problem discussed in [10] and [11]. Using standard variational

techniques, the optimal control is

Bu(t) "1 - Q E s (3.12)

where C BT Q 8 + R] with p(t) and s(t) satisfying
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= -AT + ET Q B BT] p+ ET11 + Q B R"1 BT1. Q E s

S [ A B- 1 BT Q E] s + BAr1 BT  (

I(tl) 0 ;P 2)  0

Setting p(t) -R(t) 1(t) in (3.13) a Riccati equation can be obtained

for R as described in [l]. Thus the desired model following gain is

K(t) = EBT Q B + R]"I BT [R(t) + Q(H - A)] (3.14)

3.3 Regulator and Stabilizing Controls

In this section the sensitivity problem discussed in section 2.4

will be slightly restated such that a standard solution technique can

be employed to obtain the feedback gain. The cost functional will

remain unchanged, i.e.

J = sT(t2) s(t2) t2 [sTQs + sT KT R KJ _. dt (3.15)

where all matrices are assumed continuous. The first two terms represent

final value and mean square sensitivity measures whereas the last term

limits the amount of feedback. In the sensitivity equation (3.1) the

parameter error forcing term, i(t), will be treated as a disturbance

which effectively produces initial condition errors along the tra-

jectory. Thus (3.1) can be replaced by

A s + B Ks ;s(t1) = 11 (3.16)

where s1 is arbitrary. This method of treating disturbances has been

used in [37] to generate linear feedback controls for optimal nonlinear

systems. The minimization of (3.15) subject to (3.16) was discussed

in [11). The solution is
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K(t) A 8R B P(t) (3.17)

- . where the (nxn) matrix P satisfies

PPA +AP -PBRl BTP +Q ;P(t) =0.(3.18)

22)

The remaining question is what effect does the approximation of

the parameter error forcing term by the arbitrary initial condition
vector have on the first order sensitivity given by (3.1)? Let the

open loop sensitivity, 10, be given by

o As§ + j ; (t ) 0 (3.19)

and similarly the closed loop sensitivity by

l " A A +B Ks + Pst(t) 0 (3.20)

where K is computed from (3.17) and (3.18). The following theorem,

which is similar in structure to that of [14) for linear optimal

systems states that a sensitivity reduction does take place with the

use of the regulator gain.

Theorem 3.3: The regulator gain defined by (3.17) and (3.18) when

employed as a feedback control (2.29) causes a sensitivity reduction as

follows:

sTKT RK sc dt 4 So KT R K s dt (3.21)
-!it 1  t 1

where the open loop, s0, and closed loop :, sensitivities are given

by (3.19) and (3.20) and t'6 (t1 , t2 ).

Proof: Integrating (3.19) and (3.20), it is seen that

S0(t) -s(t) + m(t) (3.22)
where

i wherer(t) * " *(t, T) 8 K sc dr (3.23)
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and *(t, T) is the transition matrix corresponding to A, i.e.

A t, t) ( (3.24)

Let N = KT R K, an (nxn) positive semi-definite matrix, and form using

(3.22)
T N so T N S 2mT N s + mT N m

S _ -C - *m

Thus a necessary and sufficient condition for (3.21) is that

[2m NSc N m dt >0 (3.25)ti

Substituting (3.17) into (3.23) gives

mIt') V 0t *(t, T) C(T) P(T) Sc(T) dT (3.26)
t 1

where C = B R - T . A differential equation for m(t) can easily be

obtained from (3.26) as

-A m_ + C(t) P(t) s (t) ; (tl) = 0 ( (3.27)

Also multiplying (3.18) by mT and then myelds

"d T p 2 mT PT C p m + mT _

where (3.27) was substituted for A m. Now the above can be integrated

between tI and t' to give
T- t' TmT

-mT(t!) P(t) m(t') = 2mT PCP Sc + PCP m dt
tl

t' J Qnadt
ti
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But since P(t ) is positive semi-definite V t' 6 (tit t2) and Q is
positive definite, the above implies that

1t 2 T pCp s mT + PCP dt > 0 (3.28)

tI

Also by (3.17) and (3.26)

KT R K = P B R"I R R"I 
BTp P C p

and thus (3.28) implies (3.21) which completes the proof. Note that

when m(t) is nonzero on (t1, t' ), (3,28) and consequently (3,21) are

strict inequalities. This will usually occur for nonzero g(t) if

(3.20) is controllable.

An interesting corollary can be obtained from Theorem 3.3 which

explicitly relates stability and sensitivity reduction. To this end

i* assume that the system matrix A in (3.1) is constant and stable

r (negative eigenvalues). Then it was shown in [38] that the equation

* -I=AT Y + Y A (3.29)

has a unique solution Y which is symmetric and positive semi-definite.

Define the feedback gain by
"i" BT

K -BTY . (3.30)

Corollary 3.3: The use of the gain defined by (3.30) and (3.29) as a

feedback control causes a sensitivity reduction as follows:

It ScT K s dt < I S T KTK so dt (3.31)

ti ti

where the open loop, so, and closed loop, s , sensitivites are given

by (3.19) and (3.20) with A a constant, stable matrix and t'6 (t1, t2).
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Proof: The method of proof is similar to that of Theorem 3.3

and will thus not be repeated.

It should be noted that Porter obtained similar results in 18]

using frequency domain techniques; however,it was necessary to assume

m "that the time interval (t1, t2) of control was unbounded. Thus
Corollary 3.3 effectively extends those results.

3.!
V

I
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Chapter 4

Minimum Sensitive Gain Feedback Control

4.1 Introduction

In this chapter the explicit problem of determining a feedback

gain matrix which minimizes (2.34) subject to (2.37) will be considered.

An additional assumption of continuity in time will be placed on the

original system functions so that standard second order conditions

can be applied. The minimization problem examined in the remainder

of this chapter is for completeness restated below.

The closed loop system dynamics are described by

"..... _;- f(t, x, u_(t,x) W 1l ;x(t I )  41 (n4.1)

where x u(.) and _q have dimensions n, r and m respectively and f(.)
is continuous in t and C1 WRT x_, u(.) and a. The control function is

given by

;u(t,x) = uL(t) + K(t) x(t) (4.2)

where ul(t) is determined such that

u(t, n) = un(t) - (4.3)

with 4(t) and un(t) being the nominal solution of (4.1) for the

parameter a - nn . The problem is to determine the (rxn) gain matrix

K(t) such that, for small variations An from the nominal parameter
the actual trajectory x(t) remains close to 4n(t) over the original

optimization interval. It will initially be assumed that n is known

to Within a scalar constant, i.e. n = na n where na 1 s an unknown

magnitude operating through a known direction n . The results will

later be extended to multiple parameter variations. From section 2.4,

the first order sensitivity vector s(t) relative to na is described by
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s A(t) s + B(t) K(t) s 1 (t) ; s(tl)=o (4.4)

where A, B and g represent the partial derivatives of (4.1) WRT x, u(.)

and n respectively evaluated along the nominal. The initial value of

the sensitivity vector, so , will normally be zero since the parameter

will usually not affect the initial state x In what follows it

is assumed that the original problem (4.1) is defined over a fixed

time interval [O,T].

The sensitivity cost function employed in this chapter is similar

to that given by (2.34). Two measures of trajectory sensitivity are

1 T Tmean square T s Q sdt
0

I1 Tfinal value = s (T) D s(T)

where Q and D are positive semi-definite matrices which are continuous
in time. The system error is limited by restricting the amount of

feedback K(t) x(t) or equivalently K(t) s(t). This restriction

can be included in the cost by the addition of one of the following

functions

1 T r n 1 JFI  2 ET  E ; RIj KI ] dt

o i=I j=1

F2 ST  sT KTR K s] dt
0

where Rij > 0 Vi,j and R is an (rxr) positive definite symmetric

matrix, both of which are continuous in time. The term F1 restricts

each state feedback component whereas F2 restricts each control

component. The use of either F1 or F2 depends on the number of unknown

parameters and will be discussed further in the sequel. For scalar

parameter variations, F1 can be combined with the trajectory sensitivity

measures to yield the following cost functional
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I T 1I T r n 2SJ (K) ~s (T) D s(T) + Y [T s Q + Z Z R1  K1 ~~2 dt (4. 5)0 il j=l

which effectively trades off the cost of feedback for reductions in

trajectory sensitivity. The problem is thus to determine K(t) such

that (4.5) is minimized subject to (4.4).

The following sections contain necessary and sufficient conditions

for the existence of the minimum sensitive feedback gain. In addition,

the relationships between minimum sensitive control and least square

* parameter estimation are discussed in Appendix C.

4.2 Necessary Conditions for Minimum Sensitivity with State Feedback

Cost

Necessary conditions for the problem posed in section 4.1 can be

obtained b) straightforward application of variational methods given

in [30] and [40]. The Hamiltonian is defined as follows:

H (t, s, K. p) s TQ5  1 j R 11 K iis 2

(4.6)

The adjoint equation is given by

_;:;r,.•r n K sJ T T= V HI  I Es Rij Ki - A T BK (4.7)V I Q +- T 11 j=l iii

with p(T) -D S(T)

The optimal gain K(t) is found by

"H1  n
I ~ =R K1 S1 2  + LlpBii

[-':';" @-Rj  =Rij Kijsj + 1PBts"0

which yields for sj 0 0
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;_-. T

~n

K S Pl (4.8)

The general form of the canonical equations can be found by substitut-

ing (4.8) into (4.7) and (4.4). The jth component of (4.7) is as

follows
n r n
Z Ks - 1 P1 Ai

t= QX+ R KLi R j ij

n r
- Z i B K

I.=I lj l L L-

n n

t=l i sk, -~ p1 i A11

r K n::?+ Rx K S 2_ I Pi Bl s

. S-l sj ij j j I

" where the bracket term is zero from (4.8). Thus (4.7) becomes

ju"AT p  + Q s ; p(T) - Ds(T) , (4.9)

' Similarly the Jth component of (4.4) is

n r n
ii S ]+ Z E B Si + 9Z

1.1 A ul i=I Bit K 1 i

il"n r n 1 nAi Si + r X, Pm BmL + g.
1.1ta it ' 1= tMel fi

[ n 1

Defining V I-I R y  (4.10)
Ly

The above becomes 0 t y
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- - - - - -



. . . . . . . . . ..*-

n r r nj=ZAjI S, + 6 V B Pm +  gj

i Li=1 y-1 m-1 Bit Vy Bmy

or in vector notation

-A s+ B V BT p+g ; s(O) -.0 (4.11)

Thus the canonical equations (4.9) and (4.11) are time invariant when-

ever the sensitivity equations and cost matrices are independent of

time. The linearity therefore allows a closed form solution for the
gain terms given by (4.8). Note that since s - 0 any value of K(O)

will satisfy the optimality conditions. In practice, however, an

initial bound must be determined for K(t).
The Legendre condition is obtained from (4.6) as

-2H1 - -Rtj sJ2 < 0 (4.12)
AKij

a 2 H . 0 I, L t' m
Kij aKLm

The Weierstrass necessary condition is implied by (4.12) when the

extremal is nonsingular (reference [30]).
It should be noted that even though a solution to the canonical

equations (4.9) and (4.11) may exist V t E CO, T3, the gain given
by (4.8) may not exist as a solution to the optimization problem. This

is because the sensitivity vector (4.11) may be such that s1(t' ) -0
for some J and t' E (0, T]. When this occurs the extremal becomes

singular,
a2 H,

det Aij AKm =0
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and sufficiency conditions are not satisfied. This will be discussed

in greater detail in section 4.5.

4.3 Necessary Conditions for Minimum Sensitivity with Control Feed-
back Cost

In a manner similar to that of the previous section, necessary

conditions cat be obtained for the problem of minimizing (4.5) with

F1 replaced by F2. The Hamiltonian is
1 12'1T

H2(t' 1, K,pg) -js Q,s KRKs

(4.13)

T
+ [As + BKs + P

The adjoint equation is

- : H - KTBT (4.14)

with p(T) = - ID(T)

The gain K(t) is determined by

-H2 r n n
W- = [ XZ E RS -K Z P m m Sj 0I t I m=l I  m=l 

or in vector form when sj t 0 for some j

T
-RKs + Bp 0 (4.15)

Substituting the above in (4.14) and (4.4) results in the following

canonical equations,

- ATp+ Qs ; p(T) = - Ds(T) (4.16)

,=As + BR B + ; s(O) 0 (4.17)
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which are easily solved when the system and cost matrices are time

invariant. Equation (4.15) however does not explicitly determine the

optimal gain K(t) since only r conditions are given for the (rxn)

matrix. This occurs because the cost function weights only the r

dimensional control elements. Thus additional conditions are required

to completely determine the gain matrix. It should be noted that

equations (4.15) through (4.17) with g(t) E 0 and s(0) $ 0 are equiva-
lent to the solution of the regulator problem described in [11].

The additional condition imposed on that problem to uniquely determine

the gain function is that the differential (Riccati) equation satisfied

by K(t) must hold for all s . This cannot be done when 1(t) # 0 since
(4.16) and (4.17) then generate a particular sensitivity vector s(t)

from s(O) - 0.

4.4 Extension to Multiparameter Variations

It will initially be assumed that the original system equation

(4.1) is linear with a single input and in phase variable canonical

form (reference [39]). Thus (4.1) and (4.2) become

_ = A x + BK x + B u1(t) (4.18)

where
= [ 1 0 0 0

A 0 B O

The dynamics are therefore a function of n parameters nl,...,nn*

Corresponding to each parameter n1 , a sensitivity equation can be

determined as follows:

s = As1 + BK s + (4.19)

where [ 0,...,0, xiJ with x1 the ith component of the nominal

solution of (4.18). Also, a control feedback cost function (section

4.3) can be formulated to minimize the effects of the parameter ni.
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The optimal gain must then satisfy
I BT

K S = R 1 BT (4.20)

where ii and Pi are determined from equations similar to (4.16) and

(4.17). Define the sensitivity and adjoint matrices S and P as

follows:

S. s.. ....-.. ...... S]

P R 1 R 1 BT P- .... R1 BT P

Then equation (4.20) when combined V becomes

K S =P . (4.21)

If the sensitivity vectors si(t) are linearly independent r t E (0,T],

the multiparameter minimum sensitivity feedback gain is given by

K = P S"1  (4.22)

Since s1(O) = 0, K must be bounded at t = 0.

The above analysis need not be restricted to single input linear

systems in phase variable canonical form, although at least n parameters

I:. must be involved and the sensitivity vectors must be linearly independ-
F- ent. If the number of parameters is less than n, a combination of the

feedback costs F1 and F2 can be employed to determine the optimal gain.

The existence of the optimal gain (4.22) is determined by the

linear independence of the sensitivity vectors st(t). This is because,

j,'rom section 4.3, the gain equation (4.20) holds if only one component

of sil(t) is nonzero. Thus if the matrix S is nonsingular " t E (0,T],

(4.20) holds Vi
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4.5 Sufficient Conditions for Minimum Sensitivity with State Feedback
Cost

The possibility of nonexistent solutions to the minimum sensitiv-

ity problem with state feedback cost was briefly discussed in section

4.2. In this section, the material in Appendix B is used to strengthen

the necessary conditions to obtain the following existence theorem.

Theorem 4.5: The gain matrix K(t) given by (4.8), (4.9) and (4.11)

K lexists on (0,T] as a minimum of (4.5) subject to (4.4) if

s 2 (t) > 0 _V t E (0, t] (4.23)

where sj(t) is the jth component of the solution to (4.11).

Proof: From Appendix B the existence of a weak minimum requires

satisfaction of conditions 1), 2), 3) and 5). Since (4.8), (4.9) and

(4.11) are the extremal equations, condition 1) is automatically

satisfied. In addition, (4.12) and (4.23) imply conditions 2) and 3)

and thus it remains to check for conjugate points. The (nxm) matrix

elements of (B.5) are determined from (4.6) through (4.11) to be

Fps p (4.24)

L-R~ss -sp-

From the definitions of the cost function (4.5) and of the (rxr)

matrix V (4.10) the matrices p -Is and D are positive semi-definite
p, ss

on (0,T]. Thus by Theorems B.1 and B.2, no conjugate points exist and

the proof is complete.

From the above theorem, the existence of the minimum sensitive

gain is determined mainly by (4.23) which is a somewhat strong condition

and definitely not satisfied for arbitrary cost parameters D, Q and

R in (4.5) and arbitrary functions 9(t) in (4.11). This is, however,

the price of achieving linearity of the canonical equations (4.9) and

(4.11). For a given system, cost function and nominal trajectory,

these equations can easily be solved to determine if (4.23) is

satisfied. If not, the nonsingular approximate problem formulated

in the next section can be employed to obtain the optimal gain.
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In some cases when (4.23) does not hold, the canonical equations

(4.9) and (4.11) can be adjusted such that (4.23) is satisfied. The

form of these equations closely resembles that of the canonical

equations for the regulator with S.= O. Since the regulator gain holds

for arbitrary initial conditions, it is plausible that the magnitude

of the initial sensitivity vector in (4.11), 1.(0), could be increased

from zero such that the effect of 1(t) becomes increasingly less

important in the solution for K(t). In order to do this the sign of

s(O) must be consistent with that of the trajectory generated by S(t).

The initial sensitivity vector s(0) is thus treated as a parameter in

the optimization problem which may be adjusted such that sufficiency

conditions are satisfied. This method was successfully employed in

the example discussed in Chapter 5.

4.6 A Nonsingular Sensitivity Problem

Necessary Conditions

The results of the previous section indicate that singular

solutions of the minimum sensitivity problem with state feedback cost

are the major cause for failure of the existence conditions. The

problem will be reformulated in this section such that all extremals

are nonsingular. As a consequence of this, the canonical equations

become nonlinear and must be solved either by approximation or

iterative techniques.

Examination of (4.23) and (4.8) reveals that singularities in

the optimal gain are synonymous with singular extremals. The cost

function (4.5) will therefore be modified to include a penality

term for large feedback gains as follows:

T T T
J(s)(T) D (T) + IT~ sQ+ G]dt

0
with (4.25)

r n 2 2 2
G -I 1 K(RijKij s + )Ki )
Ju1 Jul
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and E > 0 V i,j. The Hamiltonian for the problem of minimizing

iTi

(4.25) subject to (4.4) is

I T Ti H3 (t, s, K, p) - S Q"G +p [As+ Ks ].(4.26)

The adjoint equation is

1 TT
- 3= Qs.+ VsG p p- TBK (4.27)

;g' with
p(T)=- D s(T)

The Ith component of the feedback term in (4.27) is evaluated as

1 aG r

Equation (4.27) thus becomes

Tm = -A +BK E + q X(K) Js (4.28)

with the (nxn) matrix X defined as

r
E R K2

Lm

The optimality condition is obtained from equation (4.26)

n
R11 K1  S2 -E 1  K1  + 2P Bt si. (4.29)L::ii ij Rtj Ki I ti El lj

Setting the above to zero and solving for K1j yields

KnE p= BRi (4.30)KIj "Rj s z + Ei j = X•

48

-.-0" , - . . - ', . i . . . . - . -. . . .• . . . . . - . -



The above equation can be used to eliminate the gain variables in the

canonical equations as follows. From (4.28), define the n dimensional

vectors

M - KTBT p + X(K) s

or componentwise
n r r

Mj E - E P B~i Kij + Z K1 sj=i=I i=l R =iji

Substituting (4.30) into the above yields

E s n 2

M. = " 2eL " p Bti (4.31)
[R ijsJ2  Et1 J

Thus equation (4.28) is

ATp + Q s +M(, p) (4.32)

with p(T) = - D s(T) and M given by (4.31). Using (4.30) and (4.4),

the Jth component of (BKs) is

r n
(BKs)j = Z Z BjI Kim sm

9.i=l m=1

r n S n
E Bit E m z Pl B

m=l R m + E i=l i

Define the (rxr) matrix Z as

49:49

-4



n S 2

m
= { m{ j'~+E =Y!:M-1J Rm Sm + Eej

i- 9,y (4.33)

0 t y

Then

r r n T
(BKs)j = -  - - B Z y P.=Iy=l 1=I j Xy

- and (4.4) thus becomes

= As+ BZ(s)BT p- + g ; s(O)-0 * (4.34)

The canonical equations given by (4.32) and (4.34) are thus nonlinear

in s and p.

Sufficient Conditions

In order to establish existence of the optimal gain (4.30),

conditions 1), 2), 3) and 5) of Appendix B must be satis ied.

Condition 1) is implied by the extremal equations (4.30), (4.32) and

(4.34). The Legendre condition is obtained from (4.29).

32Hs _ - (Rij sJ2 + E) i =  , m
' ij ()~ 4.35)

. 0 otherwise

Since E > 0 Vi,j, the extremal is nonsingular and conditions 2) and

3) are always satisfied.

The determination of conjugate points using the methods of

Appendix B is, in general, extremely difficult. The second partial

derivative matrices in (B.5) are nonlinear in s and p which makes the

computation of the conditions for Theorems B.1 and 8.2 a formidable
task.
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The existence of the optimal gain for the scalar case can, however, be

directly proven using Theorem 5 of [43]. With some manipulation, all

required hypotheses can be shown to apply. The most difficult is the

determination of the constant C for the system and cost inequalities.

This can easily be obtained if the term

sup
g= tE [,T] g(t) I

* is added to the cost J(K), noting that the minimizing gain will be

unaltered. Cesari's Theorem is also applicable to the vector case

when Rij= 0, Yi,j . In general Rij > 0 for some i,j and then the

theorem caniot be applied since the gain and state terms are not

functionally separabl. It is probable, however, that a slight

modification can be made to the theorem to prove existence for the

general case.

Solution Techniques

Two methods of solving for the optimal gain matrix (4.30) are

given in this section. One is an iterative scheme or gradient

technique as described in Appendix B. The other is an approximation

method that yields a set of linear equations for which an explicit

solution can be obtained.

The gradient method outlined in Appendix B is directly applicable

to solving equations (4.4) with s(0) = 0 and (4.28) subject to the

optimality condition (4.29). Equations (4.4) and (4.28) correspond

to (B.13) and (B.14) respectively. The elements of (4.29) make up

the vector N used in computing the gain increment (B.17) and the

predicted cost error (B.18). The iterative method given by steps

a) through d) effectively generates a solution K(t) by forcing (4.29)

to approach zero f t E [0,T]. The rate of convergence is directly

effected by the initial choice of K(t) and the step size matrix N.

These quantities must be intuitively determined for each problem

encountered.
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The objective of the approximation method given below is to

obtain an explicit, nonsingular solution to the minimum sensitivity

problem with state feedback cost described in section 4.2. The method

effectively generates an approximate solution to the canonical

equations (4.32) and (4.34) when Etj is small. Thus the cost (4.25)

will be close to that of (4.5) with the extremal being nonsingular.

In addition, it is assumed that the sensitivity terms in the cost have

sufficient weight such that the sensitivity vector s(t) is small.

An approximation to (4.32) and (4.34) can then be obtained by examining

the nonlinear elements M and Z. From (4.31) the components of M

are analytic at zero relative to E and si, i.e.

E1 im li M ) rn (ii: M)ZTiT:Eli-* sj-+ 0s-,0 E i -

Thus an expansion of M. about zero results in

._(,p. E)-f 0 .

Using this in (4.32) gives

S-AT p+ Qs ; p(T) =-Ds(T) (4.36)

It is seen from (4.33) that the matrix Z(s, E) is not analytic at zero

since

lim ( lim Z E) 0

Eii -"0 s" s 0

U1 but

lim l mT-.Zls E) "V
:-s j-+0 (E t-+ 0 -
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where V is defined by (4.10). This is to be expected because,at
s. 0, the gain given by (4.8) has a singularity whereas that given

by (4.30) is equal to zero. Since Eij > 0 Yi,j and s(O) - 0, (4.33)
indicates that Z(O, E) = 0. The sensitivity equation (4.34) therefore

initially runs open loop. As the magnitude of s(t) increases, the

matrix Z(s E) approaches V. Equation (4.34) will thus be approximated

as follows:

AS 1 + (0) =0 0 4 t 'T I

(4.37)
T12 A 2 + BVB p + ; s2(TI) = s1 (TI) ; T1<t -T

where T1 E (0, T) is a design parameter

and

)(t) =0 t T,

_2(t) T1 < t •T

Equations (4.36) and (4.37) can be explicitly solved as a coupled

system. From (4.30), the optimal gain K(t) is

[ 0 0 c t <T

Kij(t) s n (4.38)
• X pj kB8 i T1 < t •4 T

R i sj2 + Eij k=1

The relationship between the approximate solution given above

and that of the singular problem described in sections 4.2 and 4.5 is

as follows. The approximation effectively reduces the time interval

of optimization and, in doing so, generates an initial sensitivity

vector consistent with g(t). This was discussed in section 4.5 as a

53



possible means of satisfying existence conditions. The problem result-

ing from some components of 1(t) approaching zero on (T1,T] still

remains, although this in part dictates the choice of T1. When this

occurs, the approximation of W by V on (T1,TJ is no longer valid.

The choice of T1 is further complicated by the fact that the desired

trajectory sensitivity may not be attained if T1 is too large.

In summary, the use of the above approximation and the choice

of T1 is problem dependent and related to the behavior of j.(t) and to the

desired trajectory sensitivity. If the time parameter T1 can be

chosen such that

s(t) >0 V t (T1,T]

then equations (4.36) through (4.38) give the desired solution. If

not, recourse must be made to the gradient method.
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Chapter 5

Comparison Example

5.1 Problem Formulation

It is of interest to compare the reduced and minimum sensitivity

solutions discussed in previous chapters. The techniques outlined in

Chapter 3 for obtaining the feedback gain function effectively represent

the best of the known nondynamic methods presently used for sensitivity

reduction. The solution obtained in Chapter 4 minimizes sensitivity

relative to (2.34) and (2.37). The question examined in this

chapter is how much better does the minimum sensitive (MS) gain

:. perform relative to the regulator (RG) and model following (MF)

solutions? A first order example will be described below.

Let the original design system (nominal) be given by

= an x + b un  x(O) = 10 (5.1)

with u = kn xn obtained from

min I fT (x2 + r u 2 )dt (5.2)

where

an=1 b=l

T = 1 r = .2, 1

The quantity an waschosen positive so that (5.1) as an unforced

system would be unstable. This will accentuate the effect of any

variation in an. Also, two values of r were chosen to vary the form

of the nominal trajectory.

The feedback compensator is given by

u(t) = Un(t) + k(t) E y(t) - Xn(t) ) (5.3)
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where u and xn are nominal solutions of (5.1) and (5.4). The actual

(real world) system is assumed to be

= 1.2y + u(t) ; y(O)- 10 (5.4)

where the parameter was varied 20 percent in the unstable direction.
7: .Note that if no parameter variations occur, then y - xn and u - Un•

Two measures of the system error are

Mean Square = 1 (y -x) dt

0
;::, (5.5)

Final Value = y(1) - Xn(1)

The cost of using feedback is measured by

1 )2
Feedback Cost = f (u - un) dt (5.6)

0

Note that if (5.4) is run open loop, then u =u and no cost penality

is incurred.

The MS compensator is determined as a solution to the following

problem

M' [ Id s2 (1) + f l1 (qs2 + k~s2) dt (5.7)
K0

subject to

s =ans + bks + x(t) ; s(O) =0 (5.8)
n n

which corresponds to that posed in section 2.4. The regulator gain is

also obtained from (5.7) and (5.8) but with x (t) * 0 and s(O) # 0.n
For the first order case, the model following control is a constant
negative gain such that (5.4) is stabilized.

In this example, the gain k(t) is chosen either as a solution
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to (5.7) and (5.8) for various values of d and q or as a variable

negative constant k(t) - - ko . This determines the feedback control

(5.3) to be used in the actual system (5.4). Equation (5.4) is then

integrated to obtain the performance measures (5.5) and (5.6). A

comparison of the feedback cost required to obtain a given sensitivity

reduction can thus be obtained for the MS, RG and MF compensators by

varying d, q and k0 .

5.2 Numerical Results

The problem posed in the previous section was programmed on a

digital computer with Runge-Kutta techniques used to integrate (5.4),

(5.5) and (5.6). The major results are shown in Figures 5.1 through

5.4. In each case an open loop trajectory was generated with k(t) E 0.

A suitable goal for error reduction with feedback was then taken as

10 percent of the open loop error.

Figures 5.1 and 5.2 present the comparison results for a

decreasing nominal trajectory, xn(t), obtained with r = .2 in (5.2).

It Is seen that the MS and MF compensators respectively give the low-

est and highest errors for equivalent feedback costs. To achieve ten

percent of the open loop mean squared error, Figure 5.1 indicates that

the MS gain requires 30 percent less feedback effort than does the

regulator. The reduction of the final error is not as great in Figure

5.2, however, the final value sensitivity cost term, d, in (5.7) was

zero for those runs.

Similar results are depicted in Figures 5.3 and 5.4 for an

approximately constant nonimal trajectory obtained with r = 1 in (5.2).

To achieve 10 percent of the open loop mean squared error, the MS

gain requires 50 percent less feedback effort than does the regulator.

The MS gain did not always exist, as was discussed in section 4.5.

This situation was remedied by employing a nonzero initial sensitivity

term. The results are shown in the figures which indicate that the

MS gain still gives a significant performance improvement over that

of the regulator.
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5.3 Discussion

Some observations can be made concerning the MS and regulator

gains which are both time varying. It appears that the existence of

the MS gain is determined in part by the stability of the nominal
trajectory. Some cases were run with an increasing nominal trajectory

which resulted in greater existence problems than those of Figures 5.3

and 5.4. Also the inclusion of small final value constraints

(d > 0 in (5.7)) for the MS and regulator gains gave no signif-

icant relative performance change. In addition, runs were made with

a stable nominal trajectory (an = -I in equation (5.1)). Less

performance difference between the MS and regulator occurred than with

the unstable nominal. This is to be expected since stable systems

automatically reduce the effects of disturbances.

One possible drawback in using the MS gain over the regulator

is that the former is more susceptible to measurement errors. Since
the MS gain must initially be bounded, it will in general have a

larger average magnitude over the interval than will the regulator.

However, if the parameter variations are of significant magnitude and

adequate prefiltering is done, measurement noise should produce

*negligable effects.
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Nom. Traj.: 10-2.9
Open Loop Error: 1.16
Parameter Values

MS: q = I-10, d =0
RG: q =5-40, d =0
MF: k= 2-15

--10% O.L. Error

.3__ _ _ _ _

o .2
-- MMS- .

S-
ig.. 

RG M

01

.2 .4 .6 .8 1.0 1.2

Feedback Cost

Figure 5.1 Mean Square Error

Feedback Cost for Decreasing Nominal Trajectory
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-~ Nom. Traj.: 10-2.9
Open Loop Error: 1.97
Parameter Values

MS: q -1-10, d -0
RG: q - 5-40, d a0

MF: k( 2-15
--10% 0.L. Error

hi ~~~1.2 __ _ __ _ __ _ __ _ _ _ _

K L.8

U. 0F

.4

.2 .4 .6 .8 1.0 1.2

KFeedback Cost

C Figure 5.2: Final Error
vs

Feedback Cost for Decreasing Nominal Trajectory
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Nomi. Traj: 10-12.3
Open Loop Error: 3.14
Parameter Values
MS: q - 1-10, d - 0
RG: q - 2-20, d a 0
MF: ko = 1-4

--10% O.L. Error
- S- (0) I

1.2

RG

o.8

MS MF

L
.4

0*

0 .8 1.6 2.4 3.2 4.0

Feedback Cost

Figure 5.3: Mean Square Error
vs

Feedback Cost for Approximately Constant Nominal Trajectory
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Nom. Traj.: 10-12.3
Open Loop Error: 3.65
Parameter Values

MS: q - 1-10, d - 0
RG: q - 2-20, d - 0
MF: k =1-4

0
--10% 0.1. Error

--- s(O) I

2.4

MF

1.6

L.G

S..S

2 .8

0
0 .8 1.6 2.4 3.2 4.0

Feedback Cost

Figure 5.4: Final Error
vs

Feedback Cost for Approximately Constant Nominal Trajectory
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Chapter 6

Conclusions

6.1 Summary

A major contribution of this dissertation is the formulation of

the trajectory sensitivity problem as a direction field problem in the

calculus of variations. This formulation is unique in that it is

*: applicable to a large class of nonlinear systems which previously

could not be handled by standard sensitivity methods. It also has the

desirable property of reducing, under certain conditions, to the

classical formulation of the sensitivity problem.

The principal result obtained from the new formulation is the

development of a theory for the practical design of linear feedback

compensators which minimize trajectory sensitivity. With the assump-

tions of small parameter variations and quadratic sensitivity cost

terms, the general problem reduces to one for which an explicit

noniterative solution can be obtained for a linear feedback gain

function. The necessary and sufficient conditions developed for the

minimum sensitive gain effectively extend the regulator theory

-"developed by Kalman to include unknown constant disturbances.

6.2 Extensions

There are at least three ways in which the results of this

dissertation can be extended. The first and probably the most fruitful

is to generate the linear feedback controls in section 2.4 from dynamic

systems. The possible advantages of this over pure gain feedback are

that the singularity problems could be removed by including rate

limiting terms in the cost and that the sensitivity to measurement

disturbances might be decreased. Also, in view of the advantages of

the minimum sensitive gain control over least square parameter estima-

tors, a comparison between dynamic minimum sensitive controllers and

dynamic parameter estimators (Kalman filter or observer) could yield

equivalent results.
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The direction field formulation of the sensitivity problem can be

extended to include system functions which exhibit convergence in the

mean on the parameter set instead of being continuously differentable

relative to the parameter vector. This will require a slight modifi-

cation to Gamkrelidze's proof of the necessary conditions for an

extremal.

The first order sensitivity problem derived in section 2.4 could

be generalized to include higher order sensitivity terms by relaxing
": the assumption of small parameter variations. In fact, the problem

could be formulated in an infinite dimensional space to minimize all

orders of trajectory sensitivity. This would cause the general solution

to be completely independent of parameter errors.

I,4
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Appendix A

Functional Analysis Formulation
of the Trajectory Sensitivity Problem

This appendix explicitly relates the ideas and techniques

developed in Chapters 2 and 4 to classical sensitivity methods for

linear systems discussed in Chapter 1. The sensitivity reduction

and disturbance rejection characteristics of forward loop and input

compensators are shown to be equivalent. It is also demonstrated

that the linear feedback compensator of section 2.4 is similar in

structure to classical input compensators. The most interesting

result obtained is the correspondence between the measurement noise

transfer function and the closed loop system error introduced in

Chapter 2 to limit the amount of applied feedback.

*Let the closed loop system be represented by

dd 2  d3

... ;-Figure A.I: Combined Closed Loop System
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where the linear operators Po, G, K and H are defined on appropriate

Banach spaces, the di, i = 1,...,4 represent unknown disturbances and

6P is an additive linear variation in the nominal plant. The desired

or nominal output is given by

X3n z Po 0 Uo (A.1)

The open loop system, H z K - 0 and G I, yields

x3 0  d3 + P2 + Pd1 + Pyo (A.2)

where P = Po + 6P is the actual plant operator. If the sensitivity

operator is defined as

N = [I - PGH - PK ]-1  (A.3)

then the output of the closed loop system is

3c = N [d 3 + P1 + PGdI + PGHd4 + PKd4 + PGyo * (A.4)

To make the above nominally equivalent relative to (A.1) when = 0

i = l,...,4, and P = Po, the compensator must be

G= I -K Po I+ H Po -I (A.5)
0- 0

Let the closed loop error be given by 6c = X3c - X3n and similarily

the open loop error by 6!o -30 - 3n. Then from (A.1) through (A.5)

the following holds

- = N + N I ] (4 " Pod,) (A.6)

The above indicates that when feedback is applied to make N a contra-

diction operator (approach zero) and thus reduce the effects of the

open loop system errors, a corresponding increase occurs in the output

4 error due to measurement noise. This result is similar to that
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obtained in Chapter 3. Equation (A.6) also shows that input compen-

sation (H = 0) and forward loop compensation (K = 0) have identical
error rejection characteristics.

When input compensation is employed, the plant input is

A =Gugo + Kx3

where all disturbances are assumed zero. Using (A.5) the above becomes

I [-KP u - + Kx3

or from (A.1)

p =yo + K [x3 - Xn (A.7)

which is similar in form to the MS compensator of Chapter 4.

The transfer function for measurement noise is obtained from (A.4)

as

TM = N P [ G H + K (A.8)

The closed loop system error, AS, as defined in Chapter 2 is given by

the difference between the closed loop and open loop transfer functions

when only parameter variations occur. Thus from (A.2) and (A.4)

AS=NPG-P * (A.9)

Using (A.3) and (A.5) the above reduces to

AS = N P [ G H + K ] 6P (A.l0)

It is therefore seen that the closed loop system error (A.IO), norm-

alized with respect to the parameter variations, is identical to the

transfer function (A.8) for measurement noise.
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Appendix B

Existence and Solution Techniques

for Variational Problems

8.1 Necessary and Sufficient Conditions for a Relative Minimum

Sufficient conditions are determiined in this section which are
mainly applicable to the problems considered in Chapter 4. Some new
results are derived for the existence of conjugate points and their

relationship to controllability. The variational problem considered

is stated as follows:

ml T

i~min

KJ(T, s. K) =*(T, s)+ f L(t, sK) dt (8.1)
0

subject to
-f(t, s, K) (0) § (B.2)

where the functions t L and f are continuous in t and C' WRT s and K,

s is an n dimensional vector and K an (rxn) array. It is assumed that

the endpoint of s is free, the time intertval T is fixed and K is un-

constrained. Defining the Hamiltonian as

where p(t) is an n vector, the following conditions can be defined

concerning the solution of (B.1) and (B.2).

1) There exists an absolutely continuous vector p(t) which

satisfies

T

-[WH(as, sK a(/asn_) + H ; p(T) d(* 1

n s

t=T

with

n H4 10 so

p0
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and where K is determined from.

3 H A*.Wij - HKI j = 0 V ,j.

A solution of the above equations (In(t), pn(t), Kn(t)) is

called an extremal.

2) The extremal is nonsingular, i.e.,

DET a2Ki HKm 0@2H1

3) Legendre - the matrix

L 2 H
is negative definite along the extremal.

4) Weierstrass - The function

E(t, s, Kn , K) = H(t, sn Kn p) - H(t, sn, K, Rd

is such that E ; 0 along the extremal i K.

5) No conjugate points exist on the half closed interval (0, T].

From references [30] and [40], necessary conditions for a relative mini-
mum are 1), 3), 4) and 5) with 3) and 5) relaxed as follows. The
Legendre condition requires only negative semi-definiteness and conju-

gate points need be considered only on the open interval.

Sufficient conditions for a relative minimum in (t, s, i) space

(weak min) are 1), 2), 3) and 5). For a strong minimum in (t, s)

space, these conditions must be strengthened by requiring 3) or 4)

to hold in some neighborhood of the extremal. In what follows, only

weak minima will be considered. Since the existence of conjugate points

is somewhat difficult to determine, the next few paragraphs are included

to give a simple explaination of them along with necessary and sufficient

conditions for their existence.
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As in ordinary calculus, the existence of a minimum is directly

related to the positiveness of the second derivative or variation of

the function. The second variation of (B.1) subject to variations

6K about the extremal determined from 1) is

32J = 6sT(T) [92 /aS
2 ] 6s(T) + I fT [6S 6K] Hs s HS  dt

o - Ks HKK 6KJ

(B.3)

where 6s(t) is obtained from
" :6" = af af

6s - 6s + 6K ; 61s(O)0 (,4

and all partials and variations are defined relative to the extremal.

One method of showing that 62J > 0 6 6K # 0 is to prove that 62J

does not have a minimum WRT K. To this end, the necessary conditions

- for a minimum of (B.3) subject to (B.4) yield the canonical equations

6s:_ Frp Hp 6s
-s = (B.5)

":-Hsp J 6PJ

6s(0) = 0 ; 6j(T) = -0 6s(T) (B.6)

where 6p(t) is an n vector and

,, = max H(t, s. p. K)

If it can be shown that (B.5) subject to (B.6) does not have a solution

on (0, T], then the necessary conditions are not satisfied and 62J > 0.

Thus consider variations 6s and 6p which satisfy only the terminal

condition of (6.6). A conjugate point will be defined relative to the
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final time as 1,o 141],Instead of the initial tlme,so that terminal

conditions can be more adequately accounted for.

Definition: A conjugate point occurs at tCE 10, T) if
- .i 3 a nontrivial solution (6s, 6p) to (B.5) on (tc, T]

satisfying p(T) a -D 6s(T) such that 6s1(t c) 0.

If a conjugate point exists, then the nonzero variation,

61.t), 6kt) tc < t  T

6s' (t), 6p(t) {

0 6ot) 0 < t < t

where 6 - po ; 6o(tc) = 6tc)

is a solution to (B.5) subject to (B.6).

* The following theorem, which evolved from a definition of con-

jugate points in [40] and [41], gives explicit conditions for their

nonexistence.

Theorem B.1: A necessary and sufficient :ondition for no con-
jugate points to exist on [O,T) relative to the problem defined by
(8.1) and (B.2) is that the (nxn) matrix e(t, T) be nonsingular on
"0, T) where

e (t,T) 1 )11(t, T) - 412 (t, T) D) (B.7)

and
::::!ip I '1 (t, T) *12 t, T) -- ( .8

0 L 2 1(t, T) ,22(t. T)

is the (Zn x Zn) transition matrix of (B.5) with D defined by (B.6).

Proof: Using (8.8) the solution of (B.5) can be represented as
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6s(t) = 11(t, T) 6s(T) + W1 (t, T) 6p(T)

(B.9)

6_(t) = ,p1(t, T) 6s(T) + *22(t, T) 6p(T)

Then with (B.6) the above becomes

61.(t) = e(t, T) 6s(T)
(B.10)

6p(t) = [ ,21(t, T) -* 22(t, T) D ]6s(T)

It is therefore seen that any nontrival variation must result from a

nonzero 6§_(T). To prove sufficiency, assume that 3 a conjugate point

at tc E [0, T). Thus from (B.10)

o = e(tc, T) 6s(T)

which, since e(t c, T) is nonsingular, implies that 6s(T) 0 0, a contri-

diction. To prove necessity assume that 3 a t'E [0, T) st e(t' ,T) is
singular. Then 9 a nonzero vector 8 st

0= e(t', T) 8

Defining 6s(T) - 8, the continuity of O(t, T) and the fact that

e(T, T) - I imply that 6s(t) $ 0 for some t E (t', T) near T. Therefore,

by definition,a conjugate point occurs at t'. This contridiction thus

completes the proof.
Since the transition matrix for time varying systems is in

*general difficult to obtain, its determination can be bypassed with

the following.

Theorem B.2: If the matrices gp, -Is and D defined by (B.5)K and (B.6) are positive semi-definite onrO, T],then no conjugate points

exist on [0,T).K. Proof: Assume that 3 a t' E [0, T) such that e(t' ,T) is not
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invertable. Then 3 a nonzero constant vector 0 st

0 e(t' , T) 1

With some manipulation, the following equation can be obtained from

(8.5)

.-T(t) Is(t) = 6T(T) 6s(T) + 1tp TH " SsT 6s) d-rI + T (- T

Let 6s(T) = 0 and t = t' , then from (B.6) and (B10)

L:'. 0 =- 6sT(T) D 61(T) - sT (T pp.+ ) 6s) dT
i" t'

Since D and -iT are positive semidefinite,the above implies that

I T (62!TFr 6p)jdT >0

But then

6 =r 6 -0 t E t', Tj

pp

because of the positive semideffniteness and continuity of I- . The
pp

6s term in (B.5) is thus uncoupled from 6p and

* 6s(t) - 0(t, T) 6s(T)

holds I t E Et' , T] where *(t, T) is the transition matrix for

6 Frp 6s

At t t , 6s(t') - 0 which by the invertability of *(t , T) implies

that 6&(T) a 0, a contridiction. Therefore O(t', T) must be invertable
and by Theorem B.1 the proof is complete.

Since the minimization problem defined by (B.1) and (B.2) has
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variable endpoints s(T) and fixed time interval 10, T], contro1l-

ability as introduced in [11] does not play an important role in the

conditions for an extremal. However, if the endpoints of (8.2) are

fixed (s(T) = s2), then there is a direct relationship between

controllability and conjugate points as shown below.

With fixed endpointsthe canonical equations for the accessory

minimization problem are given by (B.5) with (B.6) replaced by

6s(0) = 0 ; 6 s(T) = 0 (B.11)

Conjugate points can now be defined relative to the initial time t z 0,
which is the classical definition [30].

Theorem B.3: If the (nxn) matrix 12(t, 0) given by (B.8) with

T z 0 is nonsingular, then no conjugate points exist on (0, T] relative

to the problem defined by (B.1) and (B.2) with s(T) fixed.

Proof: This is similar to the first part of the proof of

Theorem B.1 and will therefore not be repeated.

Theorem B.4: If the matrices IT and -iTs of (B.5) are positive
pp ss

semiefinite on (0, T] and if (B.5) is completely controllable, i.e.

the matrix

W(O, t) t  )(0 ) ip(T) T(oT ) d
0 pp

is positive definite * t E (0, T] with 0(.) the transition matrix for

f. p, then no conjugate points exist on (0, T] for the fixed endpoint

problem.

Proof: Using Theorem B.3, the proof reduces to showing that if

W(O, t) is positive definite then fil2(t, 0) is nonsingular. This was

shown in reference [42] which contains existence theorems for

solutions of linear two point boundary value problems..

It should be noted that when (B.2) is linear and (B.1) quadratic,

such as (4.4) and (4.5), the controllability of (B.5) is implied by

the feedback controllability of (B.2).
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B.2 A First Order Gradient Method for the Solution of Nonlinear

Optimization Probl ems

The gradient method described below is a standard first order

technique for solving nonlinear problems (reference [44]). The method
is simple to apply although convergence in some cases can be extremely

slow. It is, however, quite applicable to the unconstrained minimiza-

tion problem defined in section B.l.
Adjoining the sensitivity equation (B.2) to the cost (B.1) with

multipliers p(t) results in

J = *(T, s) + fT [L(t, s, K) +p ( f) ] dt
0

Using the Hamiltonlan defined in section (B.l), the above becomes

J = *b(T, §) +S T [ -H (t. s, p. K) + p dt

0

or integrating by parts
)= (T, s) + T T , , K) dt (B.12)

f [H(t, s, pK)+ p 1 )

The gradient method basically consists of choosing an initial

value for the optimal gain Kl(t) and then using it to integrate the

canonical equations

SVpH , s(O) = so (B.13)

p. - VsH , p(T) = - Vs* (B.14)

A new gain K2(t) is determined to minimize the predicted error in the

cost (B.12). The process is then repeated until the cost error is

near zero.

The perturbation of (B.12) relative to 6s and 6K is
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S" [v H]6S(T) + PT 61.(T)

T T r nTf [[V HJ6s + E Z 6KL! ~+ - 6s dt
o 1 _ -1 j l ij "

Using (B.14) to define p(t), the above becomes

T r n 3H d

Z 6K
o =1 = ijar. i

or

6 1  H T 6K dt (B.15)

0

where H and 6K are r-n dimensional vectors with elements and

6Kij respectively. In order to limit the size of 6K, a quadratic term

is added to (B.15) as follows:

T T 1 T 6KT N 6K dt (8.16)
o0- - o

0 0

where N is a symmetric, positive definite, (nor x ner) dimensional
matrix. A necessary condition for a minimum of 6J is

+ N 6K = 0

0 or

6K N (B.17)

Using (B.17) to compute the new gain as

- K1j Kj + 6Ktj

The cost deviation is

6J- oTNT N I HK dt (B.18)

80
44

I "......



The gradient method of computing the optimal gain is thus composed

of the following steps:

a) Choose an initial gain K(t) and step size matrix N.

b) Integrate (B.13) forward from s.o and then (B.14)

backwards to obtain s(t) and p(t) on 10, T].

c) Determine the new gain from (8.17) and the predicted
cost error from (B.18).

d) Repeat the above steps until the predicted cost

error is approximately zero.
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.APPENDIX C

Least Square Parameter Estimation and Minimum Sensitive Control

C.l Introduction

As stated in Chapter 1, one solution to the sensitivity problem

is to first estimate the values of the unknown parameters and then use

m the estimates to control the system output near the nominal. The

standard technique is to include the parameters as part of the state

* . and to obtain the augmented state estimates using a Kalman filter.

Then the regulator solution can be used for feedback control (section

1.2.5). If it is assumed that initial condition errors are included

in the nominal control and that the total state, x(t), can be measured,

a nondynamic least square estimate of the parameters can be obtained'

from xL(t). The combined estimator and controller is thus given by a

linear gain function.

In this appendix the feedback control obtained with the least

square parameter estimator will be compared to the minimum sensitive

gain function derived in Chapter 4. It will be shown that both feed-

back gains have similar structures when the number of uncertain

parameters is equal to the dimension of the state, i.e. m = n. However,
when m < n the least square (LS) gain must be determined by a nonlinear

set of differential equations with time varying coefficients,and when
m > n the LS gain doesn't exist. Neither of these problems occur with

the MS gain. Other advantages which result from employing the MS

control will also be pointed out.

C.2 Least Square Controller

Assuming that the closed loop system dynamics are described by

(4.1), the linear perturbation equation is given by

af A +f  f Au+ f
_u + r ain; Ax () =o (C.l)
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where all partials are evaluated along the nominal and the A quantities

represent off nominal errors. Any initial condition error is assumed

to be included in U(t). If the parameter influence matrix is defined

by

then the above equation becomes,

A Aax +BAu +Gn ;Ax(O)-O (C.2)

Since it is desired to reduce the trajectory error, Ax(t), the

following cost-functional will be employed

1 T )Di()+11T (ATQ U
L fAlx(T)LxT + I (-Q~ R uTAu )dr(C.3)

where D, Q and R are as defined in Chapter 4. The control error term

is included in the cost to limit the amount of applied feedback. The

minimization of (C.3) subject to (C.2) results from [11] in tht

following control

Au = R'IBT P _ + R-IBTP2 An (C.4)

where the (nxn) and (nxm) matrices P1 and P2 satisfy

I - ATP + P1A + P1BR'IBTp1 - Q ; PI(T) = -D (C.5)

2 - ATP2 + PlG + P1BRIlBTP2  ; P2(T) - 0 , (C.6)

The zero initial condition on the system equation allows an estimate

of An to be obtained as follows. Using (C.4) in (C.2) and defining

H- BR1 8T, the closed loop system error is described by
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Ax (A +HPl) Ax + (G +HP,) Ain ;Ax(O) 0 (C.7)

or
Ax(t) - *T(tT) [ G + HP2 ] An dT

°0

where 4(.) is the transition matrix for the free part (An- 0) of

(C.7). Since An is assumed to be constant

Ax(t) = W(t) An (C.8)

where

W(t) - I T *(t,T) [G + HP2 ] dT

0

Differentiating the above results in=[A + HP1  W + [G + HP2 J ; W(O) =0 (C.9)

i2
Assuming that the state error can be measured as

Ax(t) = W(t) An + d

where d represents zero mean Gaussian noise, the least square estimate

of the parameter error is given by

An W+(t) Ax (C.10)

where

W +(t) [ wTw ]-I WT (C.11)

For the above inverse to exist, the number of uncertain parameters

cannot be greater than the dimension of the s'ate, i.e. m 4 n. When

m > n, the technique described in this section for obtaining a feed-

back control is not applicable. Thus, using (c.l0) in (C.4), the

control becomes

AU RB [ PI + P2W  ] (C12)
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The least square (LS) feedback gain is therefore

KL(t) = R'IBT [ P1 + P2 W+ I (C.13)

where P1. P2 and W+ are determined from the nonlinear system of

equations defined by (C.5), (C.6), (C.9) and (C.ll). From (C.12), the
LS feedback control is

u(tx) = _L(t) + KL(t) x(t)
with (C.14)

.-.: u~L~t =n(t) - L(t) nt

C.3 Comparison with ...,imum Sensitive Feedback Controller

In order to compare the least square feedback gain with that

derived in Chapter 4, it will initially be assumed that the number of

uncertain parameters is equal to the dimension of the state (m = n).

The results of sections 4.3 and 4.4 then apply when the cost functional
is given by (4.5) with F1 replaced by F2 and with the same weighting

matrices as (C.3). In particular, for each component parameter error

ni and corresponding column of [ 3fl/n ]i Ag(t) , i = ... m

the MS gain satisfies (from (4.15) - (4.17)),

- RKm s. + BT = 0

with I 1,...,m and

i =Ast + BRIBT p + 9 _s 0

S -AT p + Q 1i ; pE(T) = - D si(T)

These can be combined as in section (4.4) to yield

-R Km S + BT P =0 (C.15)

where the (nxn) matrices S and P satisfy
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"-AS+HP+G ; S(O) =0 , (C.16)

= - ATp + Q S ; P(T) = - S S(T) (C.17)

with H and G as previously defined. When S(t) is invertable, the

minimum sensitive (MS) gain is given by

Km = R BT P S (C.18)

The remaining problem is to correlate the MS gain (C.18) with the

LS gain given by (C.13). Since m = n, W+(t) = W-l(t) and (C.13) can

be written In the form

KL(t) = R'IBT [ P1W + P2 J W-  • (C.19)

Note that this is only valid for m n. When m < n,W W+ tl in general

and (C.19) doesn't hold. Let

P PL P W + P2  (C.20)

Then from (C.9)

=AW + H PL + G ; W(O) 0 (C.21)

which corresponds in form to (C.16). By differentiating (C.20) and

using (C.5), (C.6) and (C,.21) the following holds

AL " AT PL + Q W ; PL(T) = - D W(T). (C.22)

Thus from (C.19) and (C.20) the LS gain becomes

KL(t) - R-1 BT PL W 1  (C.23)

It is easily seen that by corresponding PL and W with P and S

respectively, the MS and LS feedback gains have similar structures when

m - n. However, the linear structure of defining equations is a direct
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result of the solution for the MS problem whereas some manipulation

is required to obtain this form for the LS solution. The type of least

square parameter estimator described in this appendix has been previous-

ly used in [28) to obtain neighboring optimum solutions to the cost

sensitivity problem, although the existance of the linear solution was
not recognized. An additional advantage of the MS gain is that

different cost terms corresponding to each parameter error component

can be employed as in section 4.4.

The strength of the techniques discussed in Chapter 4 is particular-

ly apparent when m X n. If m < n, the LS gain must be determined

from a nonlinear set of matrix differential equations involving a

pseudo-inverse. In contrast, the MS gain is determined from a set of

linear matrix differential equations resulting from the minimization

* of a combined state and control cost function (section 4.4). When

m > n, the LS solution doesn't exist. The MS gain is directly computed

from (C.18) with S-1 replacea by

+ = T T sT ]-l

which exists if the (nxm) matrix S is at least of rank n. It is

therefore seen that the results of Chapter 4 apply to a much larger
class of problems than does the least square estimator. In addition,

the MS gain is always determined from a set of linear differential

equations and, because of the variational formulation of the problem,

sufficiency conditions can readily be obtained.

'1k
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